

Single Genome-Editing Strategy for Multiple Genetic Disorders

Prelims: Current events of national and international importance | Science & Technology

Why in News?

Recently, a study published in *Nature* reported a new genome-editing strategy (PERT) that can potentially treat multiple genetic disorders caused by nonsense mutations.

- **Genes** - They are made of DNA (deoxyribonucleic acid).
 - It contains instructions for cell functioning and the characteristics that make a person unique.

Genetic disorders occur when a mutation (a harmful change to a gene, also known as a pathogenic variant) affects an individual's genes. It disrupts the cell's ability to build a complete, functional protein.

- **Genome editing** - Technologies that give scientists the ability to change an organism's DNA.
 - It allows genetic material to be added, removed, or altered at particular locations in the genome.
 - It is also called gene editing. And the best example is CRISPR-Cas9.
- **Background** - A nonsense mutation is a type of genetic mutation where a wrong DNA letter changes a normal codon into a "stop" codon.
 - A codon is a group of 3 DNA/RNA letters that tells the cell which amino acid to add to a protein.
- **Nonsense mutations account for about one-fourth of all known disease-causing genetic changes.**
 - As it stops protein synthesis early.
- **Mutation-Specific Therapy** - Currently, each mutation requires a separate therapy, making treatment slow and costly.

Genome editing does not involve the introduction of foreign genetic material while genetic engineering does.

- **New Technique** - **PERT (Prime-Editing-mediated Readthrough of premature**

Termination codons).

- This technique uses a normal tRNA (transfer RNA) to create a suppressor tRNA permanently.
 - The suppressor tRNA bypasses early stop signals so a full protein is made.
- Hence, the PERT technique becomes applicable to many rare genetic diseases.

Protein synthesis happens when information passes from DNA to mRNA to tRNA and then to the ribosome.

- **Mechanism** - Human cells contain 418 tRNA genes. Leucine, arginine, tyrosine, and serine tRNAs are identified as promising candidates among them.
- **Prime Editing** - tRNA genes are hard to edit, so scientists used a special gene-editing method called prime editing with many guide RNAs to find the right spot.
- They also developed a new editing enzyme called PE6c, which made the process more accurate and effective.
- **Key Results - Editing efficiency** - **60-80% that is higher than the standard repair method at 10-20%**.
- Restored enzyme activity in Batten disease, Tay-Sachs disease, etc. (17-70% of normal).
- No major off-target effects or toxicity observed.
- **Challenges** - Issues in delivery to different tissues, long-term safety, and durability.
- Clinical translation still requires further validation.
- **Significance** - Offers a single universal therapeutic platform for precision gene therapy with broad clinical applications in rare genetic disorders.

Quick Fact

CRISPR-Cas9

- **CRISPR** - It stands for Clustered Regularly Interspaced Short Palindromic Repeats.
- **CRISPR-Cas9** - Most prominent technology that enables editing parts of the genome by removing, adding or altering sections of the DNA sequence.
- **Components** - Consists of two key molecules that introduce a change mutation into the DNA.
 - **Cas9** - An enzyme that acts as a pair of 'molecular scissors' that can cut the two strands of DNA at a specific location in the genome.
 - **Guide RNA (gRNA)** - The gRNA is designed to find and bind to a specific sequence in the DNA.
- **Mechanism** -
 - The Cas9 follows the guide RNA to the same location in the DNA sequence and makes a cut across both strands of the DNA.
 - At this stage, the cell recognises that the DNA is damaged and tries to repair it.
 - Can be used to introduce changes to one or more genes in the genome of a cell of interest.
 - The technology replicates a natural defence mechanism in some bacteria that uses a similar method to protect itself from virus attacks.

Reference

