

## Significance of MediPix Technology

### Why in news?

\n\n

Scientists has recently used accelerated particles to produce first three-dimensional colour images of the human body.

\n\n

### What are the concerns with traditional radiological practices?

\n\n

\n

- **X -Ray Techniques** - X-ray based technology suffer from the deficit that they can sharply visualise only hard tissues.
- The shadows of soft tissues are less precise, Blood vessels and other conduits are imaged with invasive dyes.
- **Magnetic resonance imaging (MRI)** - It provides a slightly different picture, based on the difference in water and fat content in tissues.
- **Positron emission tomography (PET)** - It finds widest use in oncology, all but MRIs use radiation and dyes and chemical markers

\n

\n\n

### What is the recent discovery about?

\n\n

\n

- A chip of the Medipix family developed by CERN, the European Organisation for Nuclear Research, has been used by MARS Bioimaging to take colour see-through images of body parts.
- The hybrid pixel detector technology which the Large Hadron Collider used to track accelerated particles, to produce the first three-dimensional colour images of the human body.

\n

- The chip family has been in production for 20 years, and CERN's Knowledge Transfer Group had expected it to contribute to areas outside quantum physics.

\n

\n\n



\n\n

## What is the significance of MediPix Technology?

\n\n

\n

- Researchers have already used Medipix to image cancerous tissue, bones and joints and the blood supply to the heart.

\n

- The Medipix3, which MARS Bioimaging intends to commercialise, promises a single solution superior to its predecessors.

\n

- Using algorithms to model very accurate spectroscopic data in three dimensions, it shows all tissues with equal clarity, in colour.

\n

- In the case of a fracture, it shows physical damage to a bone and also reveal trauma to surrounding tissue and reveal if blood and nerve supply is compromised.

\n

- It would depict structures exactly as they are, and not all of us are built exactly the same.

\n

- In the near future, when medical care will be customised to the individual, this exactitude would make a difference to the efficacy of care.

\n

- Thus the technology is scaling up rapidly, and holds incredible promise.

\n

\n\n

\n\n

## Source: The Indian Express

\n

