

RNA-based antiviral for Plant Virus

Prelims (GS I) - General Science | Current events of national and international importance.

Mains (GS III) - Science and Technology- developments and their applications and effects in everyday life.

Why in news?

Researchers recently reported developing an RNA-based antiviral agent that confers strong protection against cucumber mosaic virus (CMV).

- **Plant virus** It is a *microscopic, infectious agent* that causes diseases in plants.
- It destroys a significant portion of annual crops worldwide.
- Unlike bacteria or fungi, viruses *cannot be controlled* with pesticides or fungicides.
- Cucumber Mosaic Virus (CMV)
- CMV is a plant virus that infects more than 1,200 plant species, including critical food crops like cucumbers, squash, and cereals, and medicinal plants.
- **Spread through -** <u>sap-sucking insects called aphids.</u>
- **Effects** Infected plants develop mosaic discoloration, stunted growth, and commercially unviable fruits.
- **Severity** Nearly 90 aphid species are capable of transmitting CMV, making outbreaks difficult to contain.

In India, CMV causes 25-30% yield losses in banana plantations.

Current RNA-based Crop Protection Techniques

- RNA Silencing It is a *natural defense mechanism* in plants.
- When a virus infects a plant, it introduces *double-stranded RNA (dsRNA)*.
- The plant responds by activating Dicer-like enzymes (DCLs), which slice the dsRNA into small fragments called *small interfering RNAs (siRNAs)*.
- These siRNAs guide the plant's defense system to recognize and destroy viral RNA.
 - **Limitations** Not all siRNAs are effective, and some plant viruses can mutate rapidly.
- **Host-induced gene silencing (HIGS)** It works by *genetically modifying plants* to produce virus-fighting dsRNA in their cells.
 - **Limitations** High production costs.
- **Spray-induced gene silencing (SIGS)** More flexible alternative to HIGS where plants are treated with *RNA sprays* instead of being genetically modified.
- **Limitations** Traditional dsRNA Spray formulations produce a random mix of siRNAs, and many are ineffective.

- Researchers first screened and identified the *most potent siRNAs* against CMV.
- These specially selected siRNA bind to the virus's genetic material to trigger a stronger antiviral response.
- Then they designed *effective dsRNA* (*e-siRNAs*) enriched with *highly functional siRNA*.
- These e-siRNAs were assembled into dsRNA constructs for more *targeted protection*.
- CMV infected plants treated with the <u>enhanced siRNA had</u> almost <u>80% lower viral</u> <u>load</u>.
- The new dsRNA formulation outperformed traditional dsRNA and it is effective against multiple CMV strains.

Advantages of the New Approach

- More *precise targeting of viral particles* of the most vulnerable genetic regions.
- Stronger defense by targeting multiple regions of viral genome simultaneously.
- The effective dsRNA can be redesigned in about a month to target new viral strains.

Reference

The Hindu RNA-based antiviral

