

Multi-fungal Tolerant Pineapple

Prelims: Current events of national and international importance | General Science.

Why in News?

Recently, Scientists from Bose Institute have identified a gene in pineapple that can provide defence to the fruit against devastating fungal attacks.

Bose Institute is an autonomous institute of the Department of Science and Technology (DST) under Ministry of Science and Technology

- Pineapple It is the most economically significant fruit of the Bromeliaceae family.
 - **Scientific name** Ananas comosus L. Merr.
- **Uses** It provides various health benefits_alongside a delicious juicy flavour, resulting in a *nutritious diet* including all vital components.
- Threats to pineapple farming <u>Fusariosis infection</u>, caused by the aggressive <u>fungus Fusarium moniliforme</u>.
- It warps the plant's stem, blackens the leaves and rots the fruit from the inside out.
- **Self defence mechanism** A newly identified *gene 'AcSERK3' can activate host defences* against plant diseases.
- AcSERK3 gene, which is a part of the pineapple's genetic code is known for *helping* plants both reproduce and survive stress.
- This gene is behind the *Somatic Embryogenesis Receptor Kinase (SERK)* which induces the self defence mechanism in Pineapple.

Somatic embryogenesis (SE) is defined as a process in which embryos that can develop into whole plants are produced from somatic cells (body cells) instead of through gamete fusion.

- **Research work** AcSERK3 gene was enhanced or overexpressed which enhanced the plant's natural defences, allowing it to fight off the *Fusarium* fungus than ordinary varieties.
- **Significance of the study** *AcSERK3*-overexpressed pineapple lines were more resilient to *Fusarium* infection due to increased stress-associated metabolites and scavenging enzyme activity.

Reference

PIB| Research work on Fungal Resistant Pineapple

