

Ideonella sakaiensis (Plastic-degrading microbe)

Prelims - Current events of national and international importance | Science & technology

Why in News?

Recently, Scientists are exploring microbial degradation as a solution to plastic pollution, utilizing bacteria and fungi to break down plastics.

- **Ideonella sakaiensis** is a bacterium with a unique ability to break down **polyethylene terephthalate (PET)**, a common type of plastic.
- It is a Gram-negative, rod-shaped, motile, non-sporing, non-pigment-producing, monotrichous bacterium.
- Genus Ideonella.
- Family Comamonadaceae / Sphaerotilaceae
- **Discovered by -** A group of Japanese researchers led by Kohei Oda and Kenji Miyamoto of Kyoto Institute of Technology and Keio University.
- **Characteristics** It was discovered from PET contaminated soil, suggesting its main habitat to be the environment, mainly soil with enriched plastic wastes.
- They are found in oxygen-rich rich moist soil and sewage sludge.
- Advantages It can completely degrade polyethylene terephthalate (PET).
- It breaks PET into its environmentally benign building blocks and it can be used as food by *I. sakaiensis* and other organisms.
- Other microbes that decompose natural polymers <u>Cellulose</u> (plant fibres), Chitin (found in fungi and insects) and Cutin (found on the surfaces of leaves).
- **Plastic-degrading microbes-** *Gordonia* and *Arthrobacter*, that degraded polypropylene and polystyrene by nearly 23 % and 19.5 % respectively.
- Waxworms (Galleria mellonella) It can eat plastic bags.
- It does not naturally consume plastic, they are common pests in beehives where they feed on honeycomb.
- Honeycomb is similar to polyethylene, the main component of plastic bags.

Quick facts

- **Polyethylene terephthalate (PET)** It is a strong, stiff synthetic fibre and resin and a member of the polyester family of polymers.
- The plastic most commonly used in bottles and food packaging.
- It is produced by the polymerization of ethylene glycol and terephthalic acid.
- Its fibres can be blended with wool and cotton fibres to reinforce their properties.

References

- 1. <u>Down to earth | Ideonella sakaiensis</u>
- 2. Microbe Notes A Guide to Ideonella sakaiensis
 Import of Polyethylene terephthalate

