


High-Voltage Graphene Supercapacitor for EVs

Prelims: Current events of national and international importance

Why in News?

Recently, a novel porous graphene-based supercapacitor (PGCN) has been developed in India to enhance energy storage for electric vehicles (EVs).

- **Supercapacitor** - A supercapacitor is a **high-capacity energy storage device** that bridges the gap between conventional capacitors and rechargeable batteries.
 - **Main components** - Electrode, electrolyte, separator, and current collector.
 - **Advantages** - High power density, long durability, and ultrafast charging compared to conventional capacitors and lithium-ion batteries (LIBs).
- **PGCN Supercapacitor** - A high-voltage supercapacitor based on dual-functional PGCN electrodes.
- **Developed by** - International **Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)**.
- **Nodal Authority** - The Department of Science and Technology (DST), the Ministry of Science and Technology.
- **Working Principle** - The supercapacitor stores energy by pulling ions from the electrolyte onto its porous graphene surface.
 - **Function** - The surface acts like a sponge for ions and a fast pathway for electricity, allowing quick charging and high-power output.

- **Key Features - Type** - Graphene-based high-voltage supercapacitor.
- **Dual Functional Surface** - The PGCN surface is both water-repellent (to prevent moisture-induced degradation) and highly compatible with organic electrolytes (super organophilic), enabling efficient and rapid penetration into the pores.
- **Porous Structure** - The micro- and mesoporous architecture significantly boosts ion diffusion compared to traditional electrodes,
- It results in high power density up to 17,000 W/kg.
- **Performance Metrics** - The electrode achieves an operating voltage of 3.4 V (surpassing the conventional 3.0 V limit)
- And, it holds 33% more energy, enhancing suitability for electric vehicles and grid storage.
- **Eco-Friendly & Scalable Synthesis** - The material is produced using a sustainable hydrothermal method.
- It is environmentally friendly and capable of being scaled up from lab-level to industrial-scale production.
- **Applications** - Electric vehicles, solar panels, grid-scale energy storage, and portable electronics.
- **Benefits** - Faster acceleration and increased range for EVs.
- Improved safety and electrolyte stability.
- Reduced need for stacking multiple cells.
- Long-term durability with 96% performance retention after 15,000 cycles.
- **Significance** - Supports India's clean energy goals and the Aatma Nirbhar Bharat initiative by strengthening indigenous capabilities in advanced energy-storage technologies.

Reference

[PIB | Novel supercapacitor for EVs](#)