

## Groundwater Pollution in India.

Mains: GS III - Conservation, Environmental Pollution and Degradation

### Why in News?

Recently, the 2024 Annual Groundwater Quality Report by the Central Ground Water Board (CGWB) reveals more than 20% of samples from 440 districts were contaminated with nitrates and <u>identified groundwater death zones</u>.

#### What is groundwater pollution?

- **Groundwater** It exists beneath the Earth's surface, filling the spaces within soil and rocks in a saturated zone.
- It's a vital source of freshwater, often accessed through wells and springs.
- **Groundwater pollution** It is also known as groundwater contamination, occurs when harmful substances contaminate underground water sources.
- Causes This can happen due to natural occurrences or human activities.
- Pollutants can enter groundwater through various pathways, including <u>surface</u> contamination, industrial waste, and agricultural runoff.
- It is largely due to the *overuse of chemical fertilisers and leaching from septic systems*.
- **Groundwater death zones** These are areas in groundwater systems where dissolved oxygen levels are significantly depleted, making it difficult or impossible for life to survive.
  - **For example**, In Budhpur, Baghpat (Uttar Pradesh), 13 people died within a fortnight this year, from kidney failure and related complications.
  - It is allegedly linked to toxic discharges from nearby paper and sugar mills contaminating local borewells.

#### What are the major contaminants and associated diseases?

- **Fluoride** The 2024 CGWB report found that 9.04% of 15,259 samples groundwater samples exceeded the *WHO's 1.5 mg/L fluoride limit*.
- Around 66 million people suffer from *skeletal fluorosis* caused by fluoride contamination.

**Skeletal fluorosis** is a debilitating condition that causes joint pain, bone deformities, and stunted growth, particularly in children.

• In Rajasthan, over 11,000 villages have reported cases.



- In Jhabua (Madhya Pradesh), fluoride levels exceed 5 mg/L, with 40% of tribal children affected.
- **Arsenic** Its exposure is concentrated in the Gangetic belt—including *West Bengal*, *Bihar*, *Uttar Pradesh*, *Jharkhand*, *and Assam*.
- It leads to *skin lesions, gangrene, respiratory problems*, and various internal cancers.

**Gangrene** is a serious medical condition where body tissues die due to a lack of blood supply.

- Elevated blood arsenic levels make 1 in 100 individuals highly vulnerable to cancer, including cancers of the skin, kidney, liver, bladder, and lungs, as well as other secondary cancer types.
  - $\circ$  In Ballia (U.P.), arsenic concentrations reached 200  $\mu g/L{-20}$  times the WHO limit— linked to over 10,000 cases of cancer and other diseases.
- In Bihar's Bhojpur and Buxar districts, similar impacts have been observed.
- While arsenic is geogenic, its mobilisation is worsened by groundwater overextraction, mining, and irrigation.

**Geogenic** refers to something originating in or caused by geological processes, especially those occurring naturally within the Earth.

**Nitrate contamination** - It is rampant in northern India and poses a severe threat to infants.

• When baby formula is mixed with nitrate-laced water, it can cause blue baby syndrome.

**Blue baby syndrome**, also known as cyanosis or infant methemoglobinemia, is a condition where a new born baby's skin appears bluish due to low oxygen levels in the blood.

• The 2023 National Health Profile recorded a 28% rise in hospital admissions from acute nitrate toxicity over five years, particularly in Punjab, Haryana, and Karnataka.



- Today, 56% of Indian districts exceed safe nitrate levels.
- **Uranium contamination** It is increasingly detected due to *excessive groundwater extraction and fertiliser use*.
- A study by the Central University of Punjab in the Malwa region found increased uranium levels in groundwater.
- It is exceeding the WHO threshold of 30  $\mu$ g/L, posing serious risks of chronic organ damage and nephrotoxicity.
- The results showed that 66% of samples posed health risks for children and 44% for adults.

**Nephrotoxicity** refers to kidney damage caused by exposure to toxic substances, including certain medications and chemicals.

# HEAVY METALS AT WORRYING LEVELS



- **Heavy metals** *Lead, cadmium, chromium, mercury* enter groundwater from unchecked industrial discharges.
- They cause <u>developmental delays</u>, <u>anaemia</u>, <u>immune system issues</u>, <u>and neurological damage</u>.
  - The ICMR-National Institute for Research in Environmental Health (NIREH) found dangerously high blood lead levels among children near industrial clusters in Kanpur (U.P.) and Vapi (Gujarat).
- Contamination from <u>leaking septic systems and sewage infiltration</u> has triggered repeated outbreaks of cholera, dysentery, and hepatitis A and E.
  - In Paikarapur, Bhubaneswar, over 500 residents were recently affected by a *waterborne disease outbreak tied to sewage-contaminated groundwater*.

## Why the crisis persists?

- **Ineffective policies** The Water (Prevention and Control of Pollution) Act, 1974, scarcely addresses groundwater pollution.
- The CGWB lacks statutory authority, and State Pollution Control Boards (SPCBs) are under-resourced and technically constrained.
- Inadequate industrial regulation Industries operate with *minimal oversight, and* <u>sanitation infrastructure</u>, especially in rural and peri-urban India, remains deficient.
- Institutional fragmentation Agencies such as <u>CGWB, CPCB, SPCBs, and the Ministry of Jal Shakti operate in silos</u>, often duplicating efforts and lacking coordination for integrated, science-based interventions.

- Weak legal enforcement While the Water Act exists, its enforcement on groundwater discharge is inadequate.
- *Regulatory loopholes* and *negligent compliance* encourage polluters.
- Lack of real-rime data Monitoring is infrequent and poorly disseminated.
- Without early warning systems or integration with public health surveillance, contamination often goes undetected until after serious health outcomes emerge.
- **Over extraction** Excessive pumping lowers water tables and concentrates pollutants, *making aquifers more vulnerable to geogenic toxins and salinity intrusion*.

### What are the acceptable limits of contaminants?

| U                               |                  | contaminants level |               | 0                                               |
|---------------------------------|------------------|--------------------|---------------|-------------------------------------------------|
| Analyte                         | Unit             | Acceptable         | Permissible*  | Health effects                                  |
| Chloride (CI)                   | mg/L             | 250                | 1000          | Eye/nose irritation; stomach discomfort         |
| Fluoride (F)                    | mg/L             | 1                  | 1.5           | Bone disease; children may get mottled teeth    |
| Iron (Fe)                       | mg/L             | 1                  | None          | Anesthetic effect; promotes iron bacteria       |
| Nitrate (NO <sub>3</sub> )      | mg/L             | 45                 | None          | Blue baby syndrome                              |
| Arsenic (As)                    | µg/L             | 10                 | No relaxation | Skin damage; increased risk of cancer           |
| Uranium (U)                     | µg/L             | 30                 | No relaxation | Increased risk of cancer; kidney toxicity       |
| Electrical<br>Conductivity (EC) | μS/cm<br>at 25°C | 750                | 3000          | Anesthetic effect; cardiovascular complications |

## What changes to be done?

- **Unified framework** <u>A National Groundwater Pollution Control Framework</u> can clearly define responsibilities across agencies and empower the CGWB with regulatory authority.
- **Modernized monitoring infrastructure** Use of <u>real-time sensors</u>, <u>remote sensing</u>, <u>and open-access platforms</u>.
- Integrating water quality data with health surveillance systems like <u>Health</u> <u>Management Information System (HMIS) for early detection.</u>
- Targeted remediation and health interventions Installing *community-level arsenic and fluoride removal systems*, especially in high-risk regions.
- Expand piped water access and awareness campaigns in water stressed areas.
- **Urban and industrial waste reforms** <u>Mandating Zero Liquid Discharge (ZLD)</u>, <u>regulate landfills strictly</u>, and enforce penalties for illegal discharges.
- Agrochemical reform Promoting organic farming, regulate fertiliser and pesticide <u>use</u>, and encourage balanced nutrient management.
- Citizen-Centric groundwater governance <u>Strengthening the role of panchayats</u>, <u>water user groups</u>, <u>and school programmes</u> in water testing, monitoring, and advocacy.

#### What lies ahead?

- *Effective interventions* could be taken including defluoridation, improved nutrition, and provision of safe drinking water.
- India's groundwater crisis calls for a *bold, coordinated, and multi-dimensional strategy* that integrates regulation, technology, health, and public participation.

#### Reference

The Hindu| Groundwater Pollution in India

