

# **Gene Editing - II**

Click <u>here</u> for Part 1

\n\n

## What is CRISPR?

\n\n

∖n

• CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats.

\n

- CRISPR Cas9 is the most prominent genome editing technique .
  - \n
- It allows researchers to permanently modify genes in living cells and organisms.

\n

- This can be used to correct mutations at precise locations in the human genome to treat genetic causes of diseases.  $\n$
- Correcting the mutation in an embryo ensures that the child is born healthy and the defective gene is not passed on to future generations.  $\n$

\n\n

### How does it work?

\n\n

∖n

• The gene editing tool has two components :\n\n

∖n

\n

∖n

- 1. a **single-guide RNA (sgRNA)** that contains a sequence that can bind to DNA.
  - \n
- 2. the **Cas9 enzyme** which acts as a molecular scissor that can cleave DNA.

\n

\n ∖n

- In order to selectively edit a desired sequence in DNA, the sgRNA is designed to find and bind to the target.
  - \n
- The genetic sequence of the sgRNA matches the target sequence of the DNA that has to be edited.

∖n

- Upon finding its target, the Cas9 enzyme swings into an active form that cuts both strands of the target DNA.  $\n$
- One of the two main DNA-repair pathways in the cell then gets activated to repair the double-stranded breaks.  $\n$
- While one of the repair mechanisms result in **changes** to the DNA sequence, the other is more suitable for **introducing specific sequences** to enable tailored repair.

∖n

- In theory, the guide RNA will only bind to the target sequence and no other regions of the genome.
- But the CRISPR-Cas9 system can also recognise and cleave different regions of the genome than the one that was intended to be edited. \n
- These "off-target" changes are very likely to take place when the geneediting tool binds to DNA sequences that are very similar to the target one.  $\n$
- Though many studies have only found few unwanted changes suggesting that the tool is probably safe, researchers are working on safer alternatives.  $\n$

\n\n

## Why is CRISPR- Cas9 system significant?

\n\n

\n

• Normally, if sperm from a father with one mutant copy of the gene is fertilized in vitro with normal eggs, 50% of the embryos would inherit the condition.

\n

• However, when the gene-editing tool was used, the **probability of inheriting the healthy gene increased** from 50 to 72.4%. There was also no off-target snipping of the DNA. \n

- The edited embryos developed similarly to the control embryos indicating that editing does not block development.  $\n$
- Clinical trials are under way in many countries to use this tool for treating cancer.

\n

- It was shown in mice that it is possible to shut down HIV-1 replication and even eliminate the virus from infected cells.
  \n
- In agriculture, a new breed of crops that are gene-edited will become commercially available in a few years.
  \n
- Given all these, making gene editing possible in human reproductive cells deserves serious considerations in terms of legal, social and ethical consequences.
  \n

/1

\n\n

\n\n

#### Source: The Hindu

∖n

