

Futuristic Marine and Space Biotechnology

Mains: GS III - Science and Technology

Why in News?

Recently, the sustainable marine and space technology is gaining importance due to depleting and uneven distribution of resources.

What is futuristic marine and space biotechnology?

- **Futuristic marine and space biotechnology** - It refers to advanced biological research and manufacturing that draws on two extreme, underexplored environments—the deep oceans and outer space—to create new materials, products, and life-support solutions for the future economy and exploration.
- **Marine biotechnology** - Marine biotechnology studies ocean life—microorganisms, algae, invertebrates, and fish—to develop:
 - **Bioactive compounds** (for drugs, nutraceuticals, cosmetics)
 - **Industrial enzymes** (stable under high pressure, salinity, or temperature)
 - **Biomaterials** (bioplastics, wound dressings, hydrogels)
 - **Food and feed ingredients** (seaweed proteins, omega-3s)
 - **Biostimulants** for climate-resilient agriculture
- Marine organisms are valuable because they have evolved to survive extreme conditions (high pressure, low light, low nutrients), making their biology useful for sustainable and resilient industrial applications.
- **Space biotechnology** - Space biotechnology examines how biology behaves in microgravity and high radiation on:
 - **Microbial and algal biomanufacturing** for food, oxygen, fuel, and materials.
 - **Closed-loop life-support systems** (waste recycling, air and water regeneration).
 - **Human health in space**, including astronaut microbiomes, immunity, bone loss, and muscle atrophy.
 - **Drug discovery and regenerative medicine**, where microgravity enables unique cell and protein behavior.
- This research is essential for long-duration human spaceflight, space stations, and planetary missions.

Why does India need them?

- **Strategic and economic reasons** - India has an 11,000+ km coastline and a 2 million sq. km Exclusive Economic Zone, yet underutilises its marine bioresources.

- Marine biotechnology can:
 - Reduce pressure on land, freshwater, and agriculture.
 - Create new sources of food, chemicals, energy, and materials.
 - Strengthen the blue economy and climate resilience.
- **Space ambitions** - India's human spaceflight goals require self-reliant biological systems for food, health, and life support.
- Space biotechnology helps India avoid dependence on foreign biological solutions that may not suit Indian genetic, nutritional, and health profiles.
- Together, these fields support bioeconomic growth, technological leadership, and strategic autonomy.

Where does India stand today?

- **Marine biotechnology**
 - Seaweed cultivation is still modest (~70,000 tonnes annually).
 - India imports key marine products like agar, carrageenan, and alginates.
- **Government initiatives:**
 - Blue Economy agenda
 - Deep Ocean Mission
 - BioE3 policy
- **Emerging players and institutions:**
 - Private firms: Sea6 Energy, ClimaCrew
 - Research bodies: ICAR-CMFRI
 - State-led innovation platforms
- **Space biotechnology**
 - ISRO runs a microgravity biology programme studying microbes, algae, and biological systems.
 - Focus areas include:
 - Food production
 - Life-support regeneration
 - Astronaut health and microbiomes
 - Private participation is currently limited due to the early stage of the sector.

What are other countries doing?

- **European Union** - Large collaborative programmes on marine bioprospecting, algae biomaterials, and bioactive compounds.
- **China** - Massive seaweed aquaculture and integration of deep-sea research with industrial bioprocessing.
- **USA & Australia** - Strong support for marine biotech innovation.
- **Space biotechnology leaders:**
 - NASA (ISS) - Microbes, stem cells, protein crystallisation, closed-loop systems
 - ESA, China (Tiangong), JAXA - Plant growth, microbiomes, and biomaterial research in space

What lies ahead?

- These are first-mover domains where early leadership brings long-term advantages.

- India needs:
 - A dedicated national roadmap for marine and space biotechnology
 - Clear timelines, milestones, and funding pathways
 - Better coordination between research institutions, startups, and industry
- The biggest risk is slow, fragmented R&D, which could cause India to miss the opportunity despite strong natural and strategic advantages.

Reference

[The Hindu| Futuristic Marine and Space Technology](#)

