

Buoyancy Flux in Tropical Water

Prelims: Current events of national and international importance | Indian & World Geography

Why in News?

Recently, a new study by researchers at the University of Washington revealed the complicated process of tropical ocean waters.

- Scientists have long assumed so because rainwater is fresh and freshwater is lighter than seawater.
- **Recent Findings** A recent study revealed that rain sometimes makes the surface heavier and more stable.
- Reason Rain in the tropics often comes with large clouds and cold, dry air called cold pools.
- These cold pools can actually cool the ocean's surface by blocking sunlight and increasing the transfer of heat from the water to the air.
- **Data taken from** The researchers used data from 22 buoys across the equatorial oceans that measure *rainfall*, *sea surface temperature*, *wind speed*, *and heat transfer*.
- They analysed more than 31,000 hours of rainfall events from this data, focusing on the buoyancy flux, which combines the effects of heat and freshwater.

Buoyancy flux is the rate at which buoyancy is transported through a given area, typically per unit mass. It represents the vertical transport of potential energy due to density differences in a fluid.

Buoyancy flux	Rain	Ocean stability
Positive	Light rain (0.2-4 mm/hr).	Less stable and promotes mixing happens mostly during night than day.
Negative	Heavy rain accompanied by stronger cold pools that pull heat out of the ocean more effectively.	More stable.

- **Key findings** The study also found that at night, rainfall was more likely to cause instability than during the day.
- The researchers found two rain zones
 - **Cold rain zone** In the western Pacific and Indian Oceans, where rain was associated with more heat loss.

- **Hot rain zone** In the central Pacific where heat loss was less intense.
- **Significance** Ocean mixing plays a key role in regulating the climate by transporting heat, carbon, and nutrients.

Quick facts

Buoyancy

- It is the upward force exerted by a fluid on an object placed in it, making the object appear lighter.
- This force is a result of pressure differences in the fluid surrounding the object, as described by *Archimedes' principle*.
- **Affected by** Density of the fluid, the volume of the fluid displaced by the object, the local acceleration due to gravity.
- Not affected by Mass of the immersed object and the density of the immersed object.

Reference

The Hindul Buoyancy Flux in Tropical Water

