Adapting with Coal #### What is the issue? $n\n$ \n • Despite the loosing sheen for coal as a power source, it is unavoidable at least for few decades. \n Given this, the new methodology of power generation with coal gains significance in environmental perspective. $n\$ #### How is coal's importance at present? $n\n$ \n - Coal, as a source of energy, is firmly becoming out of favour. - The climate change considerations have contributed to this change. - Most countries have plans to phase out coal in the next few decades. - India has officially announced that it would not set up any new coal-fired power plants after 2022. $n\n$ ## Why is coal unavoidable now? $n\n$ \n • There is rapid increase in power generation from renewable sources like wind and solar. \n - It is estimated that coal would continue to be the mainstay of India's energy $\label{eq:mix} \mbox{mix for at least three more decades.} \\ \mbox{\ensuremath{^{\mbox{\sc h}}}} \\$ $n\$ #### How should it be dealt with? $n\n$ \n • Efforts are on to ensure that pollution emanating from coal is at least reduced a bit in these intervening years. \n • A variety of "clean coal technologies" is being deployed or experimented with. \n \bullet The modern "super-critical" power plants also emit lesser pollutants. \n $n\n$ ### How do thermal power plants work? $n\$ \n • Most thermal power plants burn coal to generate heat. \n The heat is used to convert water into steam. \n • The pressure of the steam is then used to move turbines that produce electricity. \n • The quality of coal is an important factor in deciding the efficiency of the plant. \n - It refers to the amount of electricity generated per unit of coal burnt. - It also takes into account the waste that is released. - Typically, coal power plants release a lot of carbon dioxide (CO2), a dangerous greenhouse gas. $n\n$ ## What is the complexity? $n\n$ \n • Coal is cheaply available in India in very large quantity. \n • But it is not preferred due to the high ash and low energy content. • Burning coal in the conventional pulverised mode results in the release of a lot of fly ash. \n - This is a major contributor to air pollution and a health hazard too. - Several techniques in place to capture fly ash, after it is produced, are not very efficient. \n • Alternatively, coal is passed through an extensive "pre-processing" process called "washing". \n • The aim is to remove some of the ash content before it is burnt. \n • This has also not been very effective. \n $n\n$ ### What is the new finding? $n\n$ \n • A new, more effective way of managing the problem ensures that the ash is removed as chunks from the reactor bed itself. \n \bullet Also, the procedure reduces the formation of CO2. \n • It instead generates synthetic gas (syngas). ۱n • This is a mixture of clean fuel gases like carbon monoxide and hydrogen, as by-products. \n \bullet These can then be put to a variety of uses. $\ensuremath{\backslash n}$ \n\n #### How does it work? $n\n$ \n - A well-known coal gasification technique is used. - Here, coal is only partially burnt with a very limited supply of oxygen. - It is done in the 'bubbling fluidized bed gasification reactor'. - At about 100°C, all moisture from the coal is drained out. - At higher temperatures (300°C 400°C), gaseous fuels trapped inside coal are released. \n • These include gases like nitrogen, methane and a mixture of many other hydrocarbons. \n • At temperatures 800-900°C, the carbon in the coal starts reacting with oxygen in the air. \n • It also reacts with the steam supplied along with air. • It then forms carbon monoxide (CO), hydrogen and carbon dioxide (CO2). $n\n$ ## How does it help? $n\n$ ۱'n • Controlling the amount of air and steam ensures that significant amounts of carbon monoxide (CO) and hydrogen (H2) are formed. \n • By this way, production of CO2, which is a greenhouse gas, can be minimized. \n • Careful systematic studies have been conducted to arrive at the regime of operation, air to coal and steam to coal ratios. ۱'n • It has been found that the addition of steam becomes **favourable in the** case of high-ash Indian coals. \n • In fact, this technique can be extended to produce syngas of high calorific value. ۱n • This can be done by enhancing the oxygen content in the oxidizer. • Besides, adding biomass, like rice husk along with Indian coal imparts catalytic effect. \n • It improves the gasification performance significantly. $\ ^{n}$ $n\n$ ### What is the way forward? $n\n$ \n • The process would improve the attractiveness of Indian coal for use in power plants. \n - \bullet It could help significantly in the transition period to renewables. \n - Existing power plants will have to replace their traditional reactors with gasification reactors for this. ۱'n \bullet In Indian coal mine mouths, such gasification reactors can be established to take care of rural power needs. $\ensuremath{\backslash n}$ $n\n$ $n\n$ ## **Source: Indian Express** \n